Small Business Innovation Research/Small Business Tech Transfer

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II

Completed Technology Project (2014 - 2017)

Project Introduction

MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will provide a better broadband spectral response than that of conventional anti-reflection coatings. Advanced coatings of this nature are needed to realize the full performance of the forthcoming generation of multi-junction solar cells, which will contain four or more junctions. Two approaches to improving the performance of the antireflection coatings will be investigated: * develop multilayer dielectric antireflection coatings incorporating LaTiO3 to achieve significantly improved optical coupling between the coverglass and cell at the ultraviolet and infrared ends of the spectral range of interest; and * develop a structure and corresponding fabrication process to oxidize the Al-containing window layer in order to reduce the absorption of light at the short-end of the spectral range of interest, thus providing extra useable photons to the cell. These two technologies will be integrated into a hybrid design which will provide the best possible coupling of light from cover glass to cell in order to achieve the highest possible efficiency in next-generation devices containing four or more junctions. It is expected that the new coatings will enable a relative efficiency increase of at least 7%, corresponding to a 2.5% absolute efficiency increase. The reliability and radiation tolerance of these materials and the solar cells incorporating the new designs will be tested.

Primary U.S. Work Locations and Key Partners

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II

Completed Technology Project (2014 - 2017)

Organizations Performing Work	Role	Туре	Location
MicroLink Devices, Inc.	Lead Organization	Industry Minority-Owned Business	Niles, Illinois
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Illinois	Ohio

Project Transitions

April 2014: Project Start

Closeout Summary: Development of Advanced Anti-Reflection Coatings for Hig h Performance Solar Energy Applications, Phase II Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/137459)

Images

Briefing Chart Image

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II (https://techport.nasa.gov/image/130352)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MicroLink Devices, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Victor C Elarde

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II

Completed Technology Project (2014 - 2017)

Final Summary Chart Image

Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II Project Image (https://techport.nasa.gov/imag e/129291)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

